
ARmy RESARCH LABORATORY

Comments on Computational Fluid Dynamics (CFD)
Code Performance on Scalable Architectures

by Marek Behr, Daniel M. Pressel,
and Walter B. Sturek, Sr.

ARL-RP-63 December 2002

A reprint from Computer Methods in Applied Mechanics and Engineering. vol. 190, pp. 263-277, 2000.

A

Approved for public release; distribution is unlimited.

20030123 055

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-RP-63 December 2002

Comments on CFD Code Performance on Scalable
Architectures

Marek Behr
Rice University

Daniel M. Pressel and Walter B. Sturek, Sr.
Computational Information and Sciences Directorate, ARL

A reprint from Computer Methods in Applied Mechanics and Engineerin, vol. 190, pp. 263-277, 2000.

Approved for public release; distribution is unlimited.

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 1

Comments on CFD Code Performance on Scalable Architectures

Marek Behr
Mechanical Engineering and Materials Science

Rice University - MS 321, 6100 Main Street
Houston, TX 77005, USA

Daniel M. Pressel and Walter B. Sturek, Sr.
U.S. Army Research Laboratory

Aberdeen Proving Ground, MD 21005, USA

July 14, 1999
Revised September 22, 1999

Abstract

We comment on the current performance of computational fluid dynamics codes
on a variety of scalable computer architectures. The performance figures are derived
from both the finite volume and finite element methodologies, and encompass shared,
virtual shared, and distributed memory architectures, as exemplified by the SGI Origin
series, CM5, and the CRAY T3D/E family, respectively.

1. Introduction

The purpose of this paper is to provide an overview of recent efforts to obtain high levels of
computer code performance using scalable computer architectures, while performing Compu-
tational Fluid Dynamics (CFD) modeling of challenging physical applications. The scope of
this paper includes experiences using finite-difference/finite-volume and finite-element tech-
niques. This paper considers only a limited number of computer techniques and computer
architectures so there is no intent for this paper to be considered as a definitive evaluation.
Rather, the intent is to gather the experience of a limited set of researchers and provide
a summary of their experiences, in order to define the current state-of-the-art for scalable
computing from these researchers perspective. The paper first outlines the approaches avail-
able in order to maximize the performance of a CFD code, discusses issues and experiences
with finite-difference/finite-volume (FD/FV) codes in Section 3 and then addresses similar
issues for finite-element (FE) codes in Section 4. Two implementations of computational
fluid dynamics codes on distributed memory architectures are discussed and analyzed for
scalability.

2. Optimization Issues

We start by discussing optimization issues that have the greatest impact on code perfor-
mance, starting with loop-level parallelism and serial efficiency, and ending with the coarse-
level parallelism, which is typically exploited on distributed-memory architectures.

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 2

2.1. Loop-Level Parallelism

Certain classes of numerical methods are known to be inherently difficult to parallelize us-
ing standard techniques on commonly available distributed-memory Multiple-Instruction,
Multiple-Data (MIMD) computers. One such class of problems involve implicit CFD codes,
represented in this paper by the work done by the authors and their colleagues on the ZNS-
FLOW code. However, if a code is known to be vectorizable, then in theory it can be
parallelized using some form of loop-level parallelism. This statement is based on the fact
that vectorization is in fact a form of loop-level parallelism.

Having said this, one has to consider why this technique is not used more often. The
answer to this question is complicated and is beyond the scope of this paper. However, the
following is a summary of a few of the issues involved:

1. Most efforts involving parallelization assume High Performance Computing (HPC) is
synonymous with an almost unlimited amount of parallelism. While once this was the
case, this is frequently no longer the case. This is important, since many 3D problems
will have loops that only support a limited level of loop-level parallelism (e.g., 100
iterations).

2. Loop-level parallelism is easiest to implement using compiler directives. Unfortunately,
many systems (especially distributed memory systems) either lack these directives en-
tirely, and/or have particularly inefficient implementations of these directives.

3. While many vector computers do support compiler directives for loop-level parallelism,
there might not be enough available parallelism to show both efficient vectorization and
parallelization. Even in cases where things worked well in theory, the combination of
the limited number of processors on vector machines and the usage policies at most
sites made it difficult to show even moderate levels of parallel speedup.

4. Most of the remaining machines that did support compiler directives for loop-level
parallelism, are/were either too small, too weak, had too little memory, or in general
were in some way too limited to be of much use for High Performance Computing.

But gradually, as the data presented in this paper here suggests, systems that will meet
the needs of HPC when using loop-level parallelism are becoming a reality. The one remaining
piece of the puzzle is serial efficiency, and it will be discussed in the next section.

2.2. Serial Efficiency

Those who are used to running highly vectorizable programs on high-end vector computers
(e.g., the CRAY C90) are used to achieving relatively high levels of efficiency (e.g., 30
percent or better of peak). On the other hand, those who are used to running programs of
systems equipped with Reduced Instruction Set Computing (RISC) processors and memory
hierarchies involving cache, frequently report low levels of efficiency even for serial code (e.g.,
numbers in the range of 1-5 percent are frequently mentioned). Clearly, if one starts out with
a low level of serial efficiency, a reasonable assumption is that when the code is parallelized,

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 3

the overall level of efficiency will drop even further. Therefore, if one is to use only moderate
numbers of processors, it is important to use them as efficiently as possible.

As a result of these observations, a significant effort was made by the authors to tune the
ZNSFLOW code for serial efficiency on systems using RISC processors. To a large extent,
the success of this effort depended on the ability to take advantage of the cache. Since the
amount of cache per processor ranged from 16 KB of on-chip data cache for the CRAY T3D
to 1-4 MB of off-chip cache (either data or combined secondary cache, depending on the
system) for the shared memory systems from SGI and Convex, it is probably not surprising
to find out that these efforts were not equally successful on all machines. Even so, these
efforts made a significant contribution to the success of this project.

2.3.' Coarse-Grain Parallelism and Portability

To date, most methods for enabling loop-level parallelism have been tied to a specific architec-
ture (CRAFT on CRAY Massively Parallel Processors or MPPs, C$DOACROSS directives
on SGI Symmetric Multi-Processors or SMPs). There is a hope that the emerging OpenMP
standard will make codes that exploit loop-level parallelism widely portable. Another ap-
proach which may be considered as a way of enhancing code performance and portability,
is to rewrite the legacy code to exploit parallelism at a coarser level than the level of indi-
vidual loops. This approach carries with it a large investment, but may be the only way
of achieving parallel performance on multiple architectures with a single code base, by tak-
ing advantage of nearly universally available message-passing libraries, such as the Message
Passing Interface (MPI) [1] or the Parallel Virtual Machine (PVM) [2]. This issue will be
discussed in-depth in the context of two application examples in Section 5.

3. Finite Difference and Finite Volume Computational Techniques

Efficient parallel performance can be achieved with relative ease for explicit CFD solvers
using domain decomposition. However, the real workhorse for Army Research Laboratory
(ARL) application specialists in aerodynamics has been codes which have evolved from
the Beam-Warming [3] linearized block implicit technique. In order to maintain familiar
operational aspects of the codes in terms of implicit performance and basic code structure, it
was desired to explore the parallelization of the code keeping the solver algorithm essentially
intact. Implicit flow solvers are generally regarded as being computationally efficient. These
techniques have, in the past, been considered difficult to convert and have perform efficiently
on scalable architectures. Recent experience on RISC-Based Shared Memory SMPs has
changed this perception. Sahu et al. [4] have shown that highly efficient performance can be
achieved if one is willing to expend the effort to restructure the code (starting with a code
structured for a vector computer architecture). Behr and Sahu [5] have obtained experience
in porting the same code to a distributed memory architecture. This experience provides an
interesting comparison to the SMP experience.

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 4

3.1. Shared Memory Architectures

Machines utilizing these architectures include SGI Power Challenge Array (PCA), SGI R10K
PCA, SGI Origin 2000, Convex Exemplar, SGI Challenge, and SGI Origin 200. These multi-
processors feature powerful RISC processors with various levels and characteristics of cache
memory in addition to the main memory. Loop-level parallelism has been implemented us-
ing compiler directives. Although tools exist to assist the programmer to identify areas of
code that can benefit from modification and performance analysis, the technique used by
Pressel [4] was to manually modify code and invoke timing queries to identify and evaluate
modifications to the code. This process was very time consuming and required a dedicated
computer scientist; however, the payoff was a high degree of performance and greatly in-
creased knowledge of how the computer architecture features affect code performance. The
effort required to achieve the performance level reported here was about 9 man-months. An
example of the performance achieved for on Origin 2000 for a set of three problem sizes
and different partitions of processing elements (PEs) is given in Table 1 and illustrated in
Figure 1. The 1 million and 12 million cell results can be directly compared to the message
passing results presented in Section 5. The results for the Origin 2000 show excellent scala-

PEs I million cells 12 million cells 59 million cells
8 793' 661 122

16 14072 1221 222
24 18952 1742 282

32 21382 2152 342

40 27362 2402 512
48 27252 2952 582
56 28622 3182 652
64 2601' 3092 73
72 29113 2923 723

80 34203 3323 793

88 36193 4003 863
96 - 400F 924

104 - 4004 924

112 - 4133 1023

120 - - 1033

CRAY C90 227 201 _6

1Machine with 32 195 MHz RIOK nodes.
2 Machine with 64 195 MHz RIOK nodes.
3 Machine with 128 195 MHz R10K nodes (pre-production).
4 Estimated from flat < 92 and > 109 measurements.
' Extrapolated.
6 Problem too large to fit in available memory.

Table 1. Scalable performance of ZNSFLOW on SGI Origins in time steps per hour; CRAY
C90 performance given for comparison.

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 5

1i milin IJ12 Mnfion 569 million

io-
0 ?

4,1

S "

3-
P

p 7.

27

Ip,

V -

u 4

E 2

I 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120
Pa

Figure 1. Graph of scalable performance of ZNSFLOW on SGI Origins relative to 8 PEs.

bility and pex formance for up to 30 processors. While results to use more than 30 processors
on larger Origins have been largely successful, the exact results are highly dependent on the
problem size. This is a direct result of using loop-level parallelism, and that for the smaller
problems one can expect to run out of parallelism before one runs out of processors. For
larger problems, this is not the case. However, even for very large problems, the perfor-
mance can be limited when using more than 50 processors. The source of this limitation is
our decision not to parallelize many of the boundary condition routines. As a result, the
job spends about 0.4-0.8 percent of it's CPU cycles executing serial code, When using 100
processors, a code with 1 percent serial code will show at best a factor of 50 speedup. These
results clearly show that the techniques employed enable highly efficient performance to be
achieved.

The performance achieved in terms of Millions FLating-point OPerations per Second
(MFLOPS) is summarized in Table 2. The ratio of performance achieved to peak perfor-
mance is, in general, about 10 - 30% for the SMPs compared to the 30% value for the vector
code on the Cray C90.

3.2. Distributed Memory Architectures

Coarse-grain parallelism was implemented on CRAY T3D and T3E architectures using the
native SHMEM message-passing libraries on these computers. This strategy followed largely
unsuccessful attempts at implementing loop-level parallelism using the virtual shared mem-

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 6

Machine Type IPEs I Peak1 MF Actual2 MF % Peak3

CRAY C90 Vector 1 1,000 311 31.1
SGI Challenge SMP 35 3,500 770 22.0
Origin 2000 SMP 30 11,700 2,958 25.3
Convex SPP1600 SMP 30 7,200 750 10.4
SGI PCA SMP 18 5,400 1,033 19.1
SGI R10K PCA SMP 15 5,850 1,369 23.4
CRAY T3D4 MIMD 128 19,200 1,080 5.6
CRAY T3E-6004 MIMD 49 29,400 1,400 4.8
CRAY T3E-12004 MIMD 128 153,600 3,854 2.5

1 Peak performance determined using FLOPS per clock cycle per processor.
2 Actual performance achieved in MFLOPS.

3 Percentage of peak performance actually achieved.
4 Message-passing version.

Table 2. FV code performance results for selected architectures.

ory programming model (CRAFT). The compiler technology was found to be lacking in
this task, leading to significantly lower-than-expected execution speeds, and high overheads
for the automatically parallelized loops. Since improvements in this compiler technology
were not immediately forthcoming, the decision was made to manually implement paral-
lelism using message-passing code to control data motion. Significant changes from the
serial code were required, with the programmer being responsible for all aspects of data
distribution, inter-processor communication, and synchronization. This effort took approxi-
mately 6 man-months, and concentrated on producing scalable and portable code, with little
scalar optimization work compared to the SMP version. The effectiveness of the compiler
optimization of the code, at the level individual processors, remains lower than desired.

The performance achieved is indicated in Table 2 in terms of MFLOPS. Note that the
scalability issues are addressed in Section 5. At the maximum partition sizes, after the code
has been constrained by lack of available parallelism, the percentage of the peak performance
is about 2-6%, well below that of the SMPs. Although the application was not optimally
sized for the number of processors used on the CRAY MPP computers, the results achieved
are believed to be in line with expectations.

4. Finite Element Techniques

Extensive experience with finite element CFD computations on parallel architectures has
been gained over the past eight years by the Team for Advanced Flow Simulation and Mod-
eling (TAFSM) at the Army HPC Research Center (AHPCRC) (see e.g. [6] and references
therein). These computations are based on primitive and conservation variable formulations
of Navier-Stokes equations of incompressible and compressible flows. They take advantage
of implicit solvers based on iterative solution update techniques, such as Generalized Mini-
mum RESidual (GMRES) [7]. These codes were implemented in the virtual shared memory
model on the Connection Machine CM5 using the CM FORTRAN compiler (CMF), in the

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 7

shared memory model on the SCI Power Challenge (SMP), and in the distributed memory
message-passing model (MP) on a range of architectures, including Cray T3D, Cray T3E,
and IBM SP.

4.1. Virtual Shared Memory Architectures

In contrast with the experience discussed earlier in attempting to port the ZNSFLOW code
to the virtual shared memory environment on the T3D, the experience with the AHPCRC
FE codes using CMF on the Connection Machine has been largely positive, with unparal-
leled ease of use, and satisfactory performance. The finite element computations typically
achieved 20 MFLOPS/node (of 120 peak MFLOPS/node) and demonstrated scalability up
to 1024 nodes. However, further development of this particular architecture has since been
abandoned.

4.2. Shared Memory Architectures

Finite element computations on the Power Challenge constitute a small portion of the overall
research described in [6]. They employ loop-level parallelism via compiler directives. Typical
computations exhibit speeds of 45 MFLOPS/node and are found to scale up to 12 processors
(the maximum number available for these particular computations).

4.3. Distributed Memory Architectures

The dominant platform for the finite element computations described in [61 is a distributed
memory architecture, with explicit message-passing calls facilitating data exchange between
processors. Individual processing nodes are programmed using standard FORTRAN 77 and
C languages; and data is exchanged using the MPI library. The cost of the initial porting
effort (from serial or shared memory code) is later offset by excellent portability. These
AHPCRC FE MPI-based codes have been moved with minimum of modifications between
multiple architectures, such as Cray MPPs, SGI Origin, IBM SP or Sun HPC 10000. Typical
computational speeds are 20 MFLOPS/node (of peak 150 MFLOPS/node) on CRAY T3D
and 60-120 MFLOPS/node (of peak 1200 MFLOPS/node) on CRAY T3E-1200. Variations
in computational speed can be observed depending on the variant of the GMRES algorithm
being used. Matrix-based variant, which minimizes number of operations at the expense of
memory, involves large data structures and large numbers of loads, and consequently invokes
higher memory access costs, Matrix-free variant, used for large problems in order to minimize
memory use, increases the total number of operations required, but results in smaller data
structures and higher percentages of peak computational speed. Good scalability is observed
on these platforms, with the possible exception of the SGI SMPs (see Section 5). These
performance results are summarized in Table 3; they can be compared with the similar
results for the FD/FV codes in Table 2.

5. Implementation Examples

Following the general discussion and results from loop-level parallelization in the previous
sections, we now discuss in more detail implementation issues inherent in developing implicit

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 8

Machine Type PEs I Peak1 MF Actual2 MFI % Peakq
CRAY C90 Vector 1 1,000 150 15.0
CM5 SIMD/MIMD 228 30,720 5,120 16.7
SGI PCA SMP 12 3,600 540 15.0
CRAY T3D MIMD 128 19,200 2,560 13.3
CRAY T3E-900 MIMD 49 44,100 6,370 14.4
CRAY T3E-12004 MIMD 128 153,600 11,451 7.5

1 Peak performance determined using FLOPS per clock cycle per processor.
2 Actual performance achieved in MFLOPS.
3 Percentage of peak performance actually achieved.
4 Matrix-based version.

Table 3. FE code performance results for selected architectures.

codes that exploit coarse-grain parallelism. The two example implementations, one each of
a finite volume code and a finite element code, take advantage of standard message-passing
libraries, enhancing their portability.

5.1. Finite Volume Implementation on Distributed-Memory Machines

We start with the ZNSFLOW-D, the message-passing implementation of the ZNSFLOW
finite volume code referred to in Section 3. In order to better explain the parallelization
issues, an overview of the typical ZNSFLOW computation steps is given below. The com-
putational grid is composed of multiple structured grid zones. All operations proceed on
a zone-by-zone basis, with inactive zone data stored either in memory, or-on a fast mass
storage device. A single zone is constructed of a regular NJ x NK x NL block of cells
aligned with J, K, and L directions. The J direction is assumed to be streamwise, and is
treated semi-implicitly with two solver sweeps in the J+ and J- directions. During the J+
sweep, for each consecutive streamwise plane, the grid points are coupled in the L direction,
while they are treated independently in the K direction. This requires a solution of K tridi-
agonal systems of size L with 5 x 5 blocks. In the J- sweep the roles are reversed, with the
coupling present in K direction only, and L block-tridiagonal systems of size K. Before the
sweeping can commence, a volume calculation of the right hand side (RHS) must take place
(Figure 2). An efficient parallel implementation of these two distinct computation phases,
RHS formation, and solver sweeps, is crucial to the overall effectiveness and scalability of
the code.

Out of the two computation-intensive stages of the code, the RHS formation yields itself to
parallelization most easily. This is a volume computation, where each grid point is operated
on independently, with only older values at neighboring points being required to complete
the computation. The entire set of zone cells can be distributed over the available PEs in an
arbitrary manner. However, for the sake of subsequent solver computations, it makes sense
to decompose only K and L grid dimensions, leaving an entire J dimension associated with a
single PE. The K - L plane is mapped onto a rectangular grid of all PEs. To avoid repetition
of inter-processor transfers, each rectangular portion of the K - L plane also contains 2

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 9

L -

a) RHS volume computation b) J+ sweep c) J- sweep

Figure 2. Data orientation and activity during ZNSFLOW-D phases for the last zone of the
benchmark problem.

a) J+ sweep b) RHS volume computation c) J- sweep

Figure 3. Data distribution during ZNSFLOW-D phases.

layers of "ghost" points which track the two closest sets of values in the subgrids belonging
to neighboring PEs. The parallelization of the solver sweeps is not as straightforward. The
algorithm requires sequential processing in the J direction, and can also be simultaneously
parallelized in both K - L directions only at a great added computation cost, e.g., via a
cyclic reduction algorithm. An alternative method is to accept serial treatment of the J and
L directions (J and K for J- sweep), and devote all PEs to parallelizing the K dimension
(L for J- sweep). This approach has the obvious disadvantage, since the scalability is not
maintained as the number of PEs exceeds either the NK or NL zone dimensions. In typical
computations however, the number of PEs and the zone dimensions are matched so that the
problem does not arise. Therefore, for the solver sweeps the desired data distribution has the
entire J and L dimensions associated with a single PE, and the K dimension decomposed

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 10

among all available PEs for the J+ sweep; and J and K dimensions associated with a single
PE and the L dimension distributed for the J- sweep. This requires repeated reshaping
of a small number of arrays between the original and two solver-specific layouts (Figure 3).
A number of smaller parallelization issues had to be resolved as well, including parameter
reading and broadcasting them among PEs, efficient disk I/O, and exchange of boundary
data between zones.

As we mentioned in Section 3, the initial attempt to port the ZNSFLOW code to a
scalable architecture involved the CRAY T3D and CRAFT shared memory programming
model. The advantages of code maintainability and ease of transition were offset by the poor
performance, and alternative approaches were explored. The more difficult task of rewriting
the code in a message-passing framework was undertaken, and the PVM-based code provided
initial speed-ups. The reshaping of the arrays during solver sweeps however was a difficult
target for efficient implementation when using two-sided PVM communication. A much
better solution was found in the form of the one-sided SHMEM CRAY communication
libraries. In addition to eliminating concerns about deadlocking, the use of SHMEM reduces
message latency and increases bandwidth. Apart from the communication issues, some
scalar optimization of the code was attempted in order to extract a reasonable fraction of
peak speed on cache-constrained architectures, but that aspect still leaves something to be
desired. A variant based on the MPI library has been since added to the code base in order
to ensure portability to platforms that do not support SHMEM, such as IBM SP and Sun
HPC. It is anticipated that both the SHMEM and MPI portions will be replaced with a
single one-sided MPI-2 version as this standard becomes widely accepted.

Speed and scalability of the message-passing code is tested on three architectures, using
Mach 1.8 flow past an ogive cylinder at a 140 angle of attack on a 3-zone 1 million cell
coarse grid, and the same geometry at Mach 2.5 on a 10 million cell fine grid. The results
are listed in terms of time steps per hour in Tables 4 and 5, and also shown in graphical
form in Figures 4 and 5. The CRAY T3E and SGI Origin platforms use the SHMEM-based
version of ZNSFLOW-D, while the IBM SP employs the less efficient MPI-based version.
For comparison, the CRAY C90 version of the code achieved 227 time steps per hour for
the 1 million cell case. As expected, the plots show better scalability for the refined grid
than for the coarse one, as parts of the current implicit solver contain parallelism only of the
order of K or L dimensions. These dimensions are 75 and 70, respectively, for the coarse
grid, and 180 and 140 for the refined one. The graphs exhibit visible notches around 70
and 75 PEs for the coarse grid, and around 70 PEs for the fine grid; these are thresholds at
which the integer number of cells per PE (for the loops with K or L parallelism) decreases
by one. A number of predictable secondary gradients in performance occurs as the integer
number of cells per PE changes for the K - L layouts. An example Mach number field at
the conclusion of the 1 million cell simulation is shown in Figure 6.

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 11

PEs .. T3E-1200 02K (300 MHz) (SP (160 MHz)
8 349 382 199

16 616 618 288
24 888 838 335
32 1062 882 342
40 1324 989 374
48 1431 1083 420
56 1642 1161 428
64 1705 1050 423
72 2141 1326 405
80 2280 1382 420
88 2443 1320 396
96 2478

104 2673
112 2711
120 2914
128 2948

Table 4. Scalable performance of ZNSFLOW-D on several platforms in time steps per hour
for 1 million cell case.

*T.H.1200 Do2K (300 MHz) E ,M SP o8 1 ,04)

2300.0'2800"
2800'

2700'
2600'
2500"
2400-

I 2300-
2200-

m 2100

* 2000
1900

1800*
.1700S1600

* 1500
1400

p 1300
¶ 200
1100-

10003
600O

* 800

6.000500
400 I

300
200
1000

0-
1 S 16 24 32 40 48 56 64 72 $0 88 6 104 112 120 128

PF.

Figure 4. Graph of scalable performance of ZNSFLOW-D on several platforms in time steps
per hour for 1 million cell benchmark case.

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 12

PEs T3E-1200 02K (300 MHz) SP (160 MHz)
16 70 41

24 99 84 54
32 127 97 62
40 152 113 72
48 179 142 81
56 190 134 84
64 203 133 89
72 248 158 93
80 247 157 94
88 276 153 95
96 298

104 317
112 337
120 355
128 327

Table 5. Scalable performance of ZNSFLOW-D on several platforms in time steps per hour
for 10 million cell case.

FUT3E.-1200 [I02K (30W MHz) HIBM SP (160 MHz)

400.

300-

S200

1 8 18 24 32 40 48 66 64 72 80 88 96 104 112 120 126

Figure 5. Graph of scalable performance of ZNSFLOW D on several platforms in time steps
per hour for 10 million cell case.

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 13

Figure 6. Ogive cylinder: Mach number distribution for the 1 million cell case.

5.2. Finite Element Implementation on Distributed-Memory Machines

The XNS code is based on a space-time variational formulation of the incompressible Navier-
Stokes equations and its finite element discretization. It has evolved from a family of codes
used in the late 80's on the CRAY C90, then ported to Connection Machine Fortran in
early 90's, and finally rewritten for a message passing environment. This family of codes
has been used to simulate a variety of fluid flows of engineering interest [6], including free-
surface flows around hydraulic structures, various stages of parafoil descent, and flows around
paratroopers egressing a cargo aircraft.

In contrast to ZNSFLOW-D, the XNS is designed to take advantage of unstructured
finite element grids, and results in more complex data distribution. The structure of the
code is essentially similar to the one previously described in the context of the Connection
Machine [8, 9]. The finite element mesh is explicitly partitioned into a number of element
sets, which form contiguous subdomains, with the aid of the METIS graph partitioning
package [10]. With each set of elements assigned to a single processor, the nodes are then
distributed in such a way that most nodes which are interior to a subdomain, are assigned to
the processor which holds elements of the same subdomain. Nodes at a subdomain boundary
are randomly assigned to processors sharing that boundary. The formation of the element-
level components of the system of equations proceeds in the embarrassingly parallel fashion,
with all data related to a given element residing on the same processor. The solution of
that equation system takes place within a GMRES iterative solver. As described in [9],
it is here that the bulk of inter-processor communication takes place, with the element-
based structures (stiffness matrices, local residuals) interacting with node-based structures

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 14

(global residuals and increments). Movement of data from element-level to node-level takes
the form of a scatter, and the reverse movement from element-level to node-level takes the
form of a gather. Similarly to the Connection Machine Scientific Software Library (CMSSL)
implementation, these operations take part in two stages: one local to the subdomain and
free of communication, and another at the surface of the subdomains, involving moderate
amount of communication. Similarly to ZNSFLOW-D, the XNS takes advantage of SHMEM
libraries on the architectures that support them, and falls back to standard MPI on the ones
that do not.

A typical application of XNS is a free-surface flow past a spillway of a dam, with the
computational domain defined in Figure 7. The flow enters the domain through the inflow
boundary (upper right), and proceeds past the spillway and the stilling basing with under-
water energy dissipators, on to the outflow boundary (lower left). The upper surface is free
to move according to the kinematic conditions at the fluid surface, and the lateral boundaries
impose a periodicity condition, so that wider section of the dam may be represented with a
narrow computational domain. The finite element mesh with 418,249 tetrahedral elements

239ft

3182ft

3f 79ft

Figure 7. Flow in a spillway of a dam: computational domain.

is shown in Figure 8.
This simulation has been performed on several architectures and many partition sizes, in

order to assess the portability and scalability of the XNS code. The results in terms of time
steps per hour for CRAY T3E, SGI Origin and IBM SP platforms are listed in Table 6, and
graphically presented in Figure 9. Owing to the large amount parallelism inherent in the
finite element implementation, the code achieves almost perfect scalability on the CRAY T3E
platform. The IBM SP takes a performance lead on small partitions, due to efficient library
implementations of matrix-vector products and other primitives used in the finite element

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 15

Figure 8. Flow in a spillway of a dam: finite element mesh.

code. However, the scalability on largest partitions of the SP starts to degrade, possibly
due to higher latencies involved in the MPI communication, as compared to SHMEM. The
Origin 2000 exhibits poor scalability in comparison; the cause has yet to be investigated.

The example flow field and the quasi-steady position of the free surface is shown in
Figure 10, with the colors representing the streamwise component of the velocity field. For
more details about free-surface simulations of this kind, interested reader is referred to [11].

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 16

PEs T3E-1200 02K (300 MHz) SP (160 MHz)
16 6.3 10.1
24 9.3 14.4
32 12.7 8.4 18.2
40 15.4 9.8 22.0
48 18.5 11.3 24.4
56 21.6 13.2 26.0
64 25.1 12.4 29.9
72 27.5 11.8 30.5
80 30.5 14.0 31.4
88 34.1 14.2 31.8
96 36.5

104 39.1
112 42.1
120 44.9
128 48.9

Table 6. Scalable performance of XNS on several platforms in time steps per hour.

*T3E-1200 002K (300 MHz) *IBM SP (180 MHz)

50
0

040

30]

VI

20

Vi

140

30

1 8 16 24 32 40 48 56 64 72 80 88 96 104112120128

PEa

Figure 9. Graph of scalable performance of XNS on several platforms in time steps per hour.

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 17

Figure 10. Flow in a spillway of a dam: free surface position and streamwise component of
velocity at the spillway surface (slip boundary condition is employed).

6. Closing Remarks

The scalable performance achieved using a variety of parallel architectures, and two families
of CFD codes, has been discussed. The results indicate that the percentage of peak perfor-
mance achieved for our FD/FV computational codes is around 20-25% on SMP computers
and about 2-6% for MIMD computers. The percentage of peak performance achieved for FE
computational codes is 7-17% for SMP and MIMD computers. The level of programming
effort required to achieve this performance is 6-9 man months when starting from a code
that is written for a vector (CRAY 090) computer. There are many features of the computer
architectures that affect the performance to be obtained, and also numerous programming
techniques to be utilized. Table 7 presents some general features of the computer chip ar-
chitectures for the results reported in this paper. In general, the SMP computer chips with
the larger off-chip cache achieve the best performance. The FD/FV code performance on
the T3D/T3E computers is penalized by the lack of a large off-chip-cache.

As computer chip technology continues to evolve, and compilers become available with
more automatic features, it may be possible to achieve high levels of performance on scal-
able machines with less programmer effort. However, it appears that compiler technology

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 18

Machine IPeak MFLOPS Processor Data on-chip off-chip Commentper PE type cache cache

C90 1,000 Vector
CM5 120 Vector - -

T3D 150 RISC 16 KB -

T3E-900 900 RISC 8+96 KB -

T3E-1200 1,200 RISC 8+96 KB - 2

SGI 100 RISC-4400 16 KB 1-4 MB 3
SGI 300 RISC-8000 - 4 MB 3
SGI 390 RISC-R10K 32 KB 1-4 MB 3

SGI 600 RISC-R12K 32 KB 8 MB 3
IBM SP 480 RISC-P2SC 128 KB -4

Convex 240 RISC - 1 MB
1 Vector registers, SRAM (very expensive and fast) memory.
2 Streams.
3 Moderate cache line size (128 bytes).
4 Long cache line size (256 bytes).

Table 7. Computer Architecture Characteristics.

will continue to lag behind and significant hand-tuning of code will be required to achieve
acceptable performance for the next several years.

7. Acknowledgement

This work was sponsored by the Army High Performance Computing Research Center un-
der the auspices of the Department of the Army, Army Research Laboratory cooperative
agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008. The content
does not necessarily reflect the position or the policy of the Government, and no official
endorsement should be inferred.

References

[1] W. Gropp, E. Lusk, and A. Skjellum, Using MPI. MIT Press, Cambridge, Massachus-
setts, 1995.

[2] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manachek, and V. Sunderam, PVM:
Parallel Virtual Machine. MIT Press, Cambridge, Massachussetts, 1994.

[3] T. Pulliam and J. Steger, "On implicit finite-difference simulations of three-dimensional
flow", AIAA Journal, 18 (1992) 159-167.

[4] J. Sahu, D. Pressel, K. Heavey, and C. Nietubicz, "Parallel application of a Navier-Stokes
solver for projectile aerodynamics", in Proceedings of Parallel CFD'97, Manchester, UK,
(1997).

Computer Methods in Applied Mechanics and Engineering 190 (2000) 263-277 19

[51 M. Behr and J. Sahu, "Parallelization of a zonal missile aerodynamics code", AHPCRC
Bulletin, 7 (1997) 9-12.

[6] T.E. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, V. Kalro, and M. Litke, "Flow simula-
tion and high performance computing", Computational Mechanics, 18 (1996) 397-412.

[7] Y. Saad and M. Schultz, "GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems", SIAM Journal of Scientific and Statistical Computing,
'7 (1986) 856-869.

[8] M. Behr, A. Johnson, J. Kennedy, S. Mittal, and T.E. Tezduyar, "Computation of
incompressible flows with implicit finite element implementations on the Connection
Machine", Computer Methods in Applied Mechanics and Engineering, 108 (1993) 99-
118.

[9] J.G. Kennedy, M. Behr, V. Kalro, and T.E. Tezduyar, "Implementation of implicit finite
element methods for incompressible flows on the CM-5", Computer Methods in Applied
Mechanics and Engineering, 119 (1994) 95-111.

[101 G. Karypis and V. Kumar, "Multilevel k-way partioning scheme for irregular graphs",
Journal of Parallel and Distributed Computing, 48 (1998) 96-129.

[11] I. Giiler, M. Behr, and T.E. Tezduyar, "Parallel finite element computation of free-
surface flows", Computational Mechanics, 23 (1999) 117-123.

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the bime for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

December 2002 Final April 1995-September 1999
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Comments on CFD Code Performance on Scalable Architectures
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Marek Behr,* Daniel M. Pressel, and Walter B. Sturek, Sr. MERC
Se. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

U.S. Army Research Laboratory REPORT NUMBER

ATTN: AMSRL-CI-HC ARL-RP-63
Aberdeen Proving Ground, MD 21005-5067

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORIMONITORS ACRONYM(S)

11. SPONSORIMONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

*Mechanical Engineering and Materials Science, Rice University, MS 321, 6100 Main St., Houston, TX 77005.
A reprint from Computer Methods in Applied Mechanics and Engineering, vol. 190, pp. 263-277, 2000.
14. ABSTRACT

We comment on the current performance of computational fluid dynamics codes on a variety of scalable computer
architectures. The performance figures are derived from both the finite volume and finite element methodologies, and
encompass shared, virtual shared, and distributed memory architectures, as exemplified by the SGI Origin series, CM5, and the
CRAY T3D/E family, respectively.

15. SUBJECT TERMS

computational fluid dynamics, high performance computing, scalable architectures
17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

16. SECURITY CLASSIFICATION OF: OF ABSTRACT OF PAGES Daniel M. Pressel
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (Include area code)
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL 23 (410) 278-9151

Standard Form 298 (Rev. 8198)
Prescribed by ANSI Std. Z39.18

UNCLASSIFIED

[This page is intentionally left blank.]

UNCLASSIFIED

